

GrafCompounder

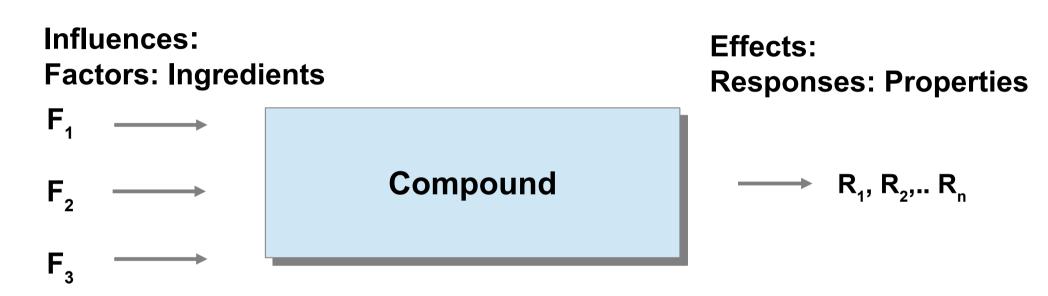
Software Application in Rubber Compounding

Dr. Hans-Joachim Graf

1

Content of this presentation

- 1. Introduction
- 2. Program idea
- 3. Justification of calculation method
- 4. Comparison with Statistic Experimental Design (DoE) Filler / Oil Design Accelerator Design DoE Simulation
- **5. Conclusion**


Conclusion

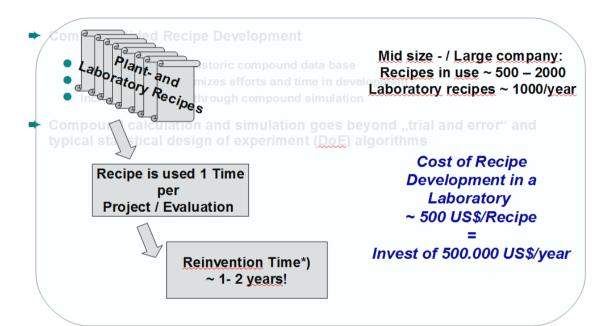
Computer Aided Compound US006411945B1 **Development** (12) United States Patent US 6.411.945 B1 (10) Patent No.: Nakajima (45) Date of Patent: Jun. 25, 2002 λ **Bridgestone Patent 1994** Inventor: Akihiko Abe (54) METHOD AND APPABATUS FOR JP 9-16654 1/1997 WO WO 94/16877 8/1994 DESIGNING MULTI-COMPONENT MATERIAL, OPTIMIZATION ANALYZER OTHER PUBLICATIONS **Bridgestone Patent 2002** λ AND STORAGE MEDIUM USING LEARNING PROCESS Europäisches Patentamt Inventor: Yukio Nakajima ð (75) Inventor: Yukio Nakajima, Tokyo (JP) (19) European Patent Office (1) Publication number : 0 647 911 A2 (73) Assignce: Bridgestone Corporation, To Office européen des brevets (*) Notice: Subject to any disclaimer, the t Colour Matching λ patent is extended or adjusted EUROPEAN PATENT APPLICATION (12) U.S.C. 154(b) by 0 days. Patents from (21) Appl. No.: 09/051,416 (i) Int. CI.6: G06F 17/50 (21) Application number : 94307269.4 BASF, CyanAmid, DuPONT (22) PCT Filed: Aug. 8, 1997 (22) Date of filing : 05.10.94 PCT/JP97/02784 (86) PCT No.: § 371 (c)(1), Empirical DoE Patent: λ (2), (4) Date: Apr. 6, 1998 (30) Priority : 06.10.93 JP 250371/93 (72) Inventor : Abe, Akihiko 29.09.94 JP 235730/94 3-5-5. Ogawa-higashi-cho (87) PCT Pub. No.: WO98/06550 Honeywell Kodaira-shi, Tokyo (JP) PCT Pub. Date: Feb. 19, 1998 (43) Date of publication of application : 12.04.95 Bulletin 95/15 (74) Representative : Whalley, Kevin Foreign Application Priority Data MARKS & CLERK. (30)57-60 Lincoln's Inn Fields (84) Designated Contracting States : London WC2A 3LS (GB) DE ES FR GB IT Recipe Libary Search and λ (7) Applicant : BRIDGESTONE CORPORATION 10-1, Kyobashi 1-Chome Comparison Chuo-Ku Tokyo 104 (JP) CombiChem, GE, Hunt (Private)

- (64) Method for designing pneumatic tires.
- (57) In order to perform tire design and development highly efficiently and provide a tire at low cost, a tire basic model for representing a tire cross-sectional shape including an internal structure and being divided into a plurality of elements, an objective function for representing

Objective of an DoE should be the identification of the most important factors $(F_{1,}..F_{n})$ on measurable effects (Responses $R_{1,}...R_{n}$) and to describe there dependency in a mathematical equation:

$$R_{i(1...n)} = f(A_0 + A_1F_1 +A_nF_n +)$$

Outlook



Why Computer Aided Recipe Development?

- $\lambda\,$ Better utilization of historic compound data base
- $\lambda\,$ Faster results minimizes efforts and time in development
- $\lambda\,$ Increases creativity through compound simulation
- No algorithm describing the relation between ingredients and properties
- It gives a better start for a typical statistical "design of experiment" (DoE) approach.
- Compound calculation and simulation should utilize Compound history, but not in a "trial and error" fashion.

Outlook

•

- Question:
- Why we can hardly take Compound Databases as working capital,

Saving time and effort in our daily work? Benefits would be:

- Avoiding reinvention
- Increase our compounding knowledge.
- Making room for really new ideas in compound development

Outlook

Database created with Statistic Experimental Design (DoE)

- λ Organized / limited size
- λ Variation of few factors according DoE
- λ Optimization, numerical and graphical / prediction Tool available in the software

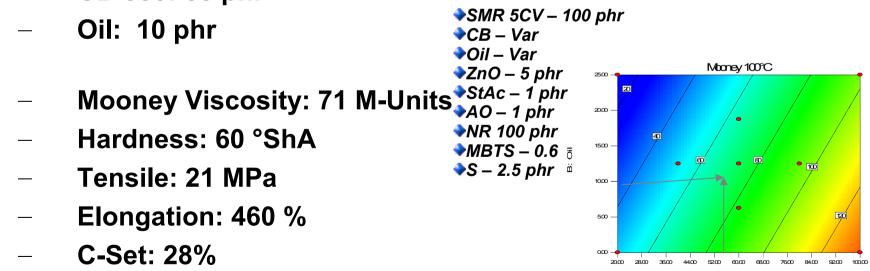
CARD [Computer Aided Recipe Development] with GrafCompounder - Historically created Database

- Unorganized / Unlimited
- Multiple factor variation
- Prediction according specification
- Justification of calculation method with linear dependencies:
 - If the majority of factor / response relations are linear the MLI – method gives sufficient accurate results inside 95% confidence interval !

Line call out:

- SEA J200: AA/BA/CA <u>NR</u>, SBR, EPDM...and other Material
- SAE J200 M4 AA621 A13 B13 F17

AA 610 Suffix 2	Rubber Hardness Tensile Elongation	NR 60°ShA 21 Mpa 350%
A13	Heat Aging Hardness Change Change Tensile Change Elongation	70h / 70°C + 15 °ShA + 30 %
B13	C-Set (22h/70)	< 25%
F17	Low Temperature Res. Non Brittle (3Min)	- 40 °C pass


Outlook

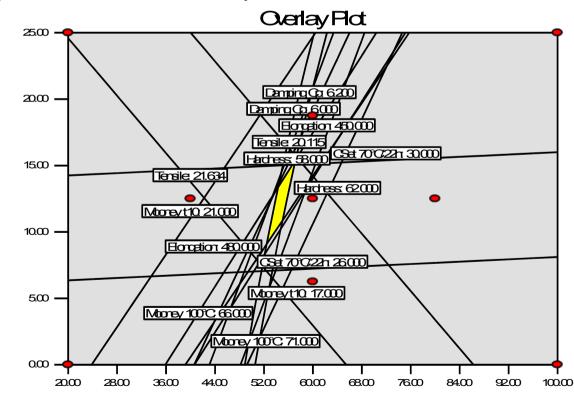
Properties of MB is determined by Polymer, CB and Oil content and the ratio or CB and Oil.

- Unit 2 as a reference (based on Cabot TG RG-135
- ...
- CB 550: 55 phr

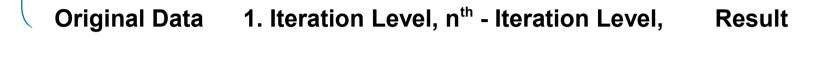
NR Compound

A NEEO

Outlook


Properties of MB is determined by Polymer, CB and Oil content and the ratio or CB and Oil.

Unit 2 as a reference (based on Cabot TG RG-135)


Ö

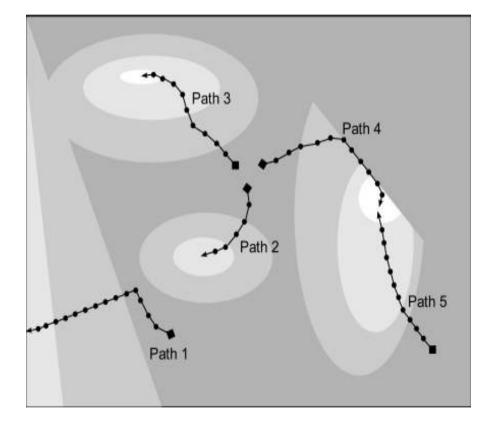
m

- . . .
- CB 550: 55 phr
- Oil: 10 phr
- **Mooney Viscosity:** 66 – 71 M-Units
- Hardness: 58 62 °ShA
- Tensile: 20 22 MPa
- Elongation: 450 480 %
- C-Set: 26 30%

Outlook

Input Data Linear Relation between: Ingredient – Property. Calculation of compounds with linear algorithm. Approximisation to target(s) via multiple iteration Dr. Hans-Joachim Graf

HJG


Output Data

Outlook

- The GrafCompounder uses the <u>Multiple</u> <u>Linear Iteration method [MLI] to calculate</u> a new recipe according to properties targeted
- The GrafCompounder enables the user to analyze and improve their compound database via identification of faulty data sets
- Each compound taken into account for the calculation and its influence of each on the final result is visualized.
 - Its contribution is given as a ratio
- The GrafCompounder is a fast and easy to use tool without utilizing a complex "hidden" mathematical and analytical method
 - The GrafCompounder works with smaller and larger Databases

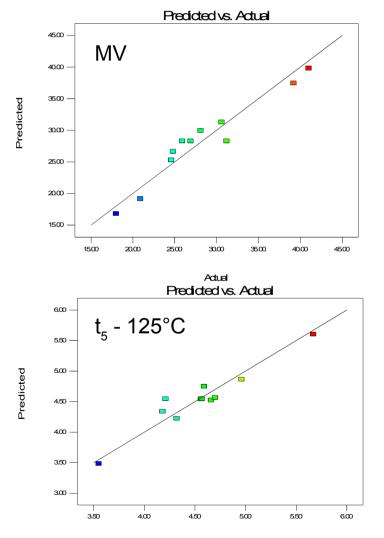
Outlook

Calculation method confirmation

- Prove with
 - 1. NR Filler / Oil DoE most of basic physicals are linear
 - 2. Filler / Oil DoE
 - 3. Accelerator DoE

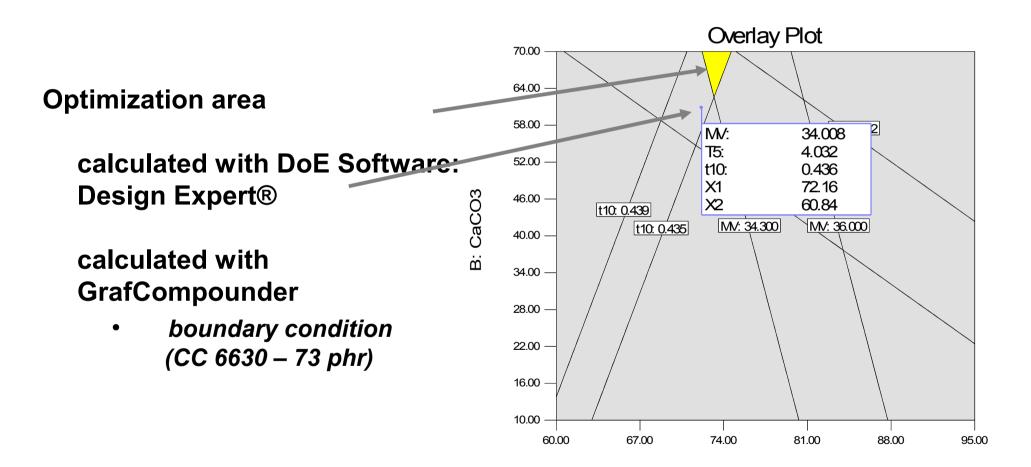
DoE with 4 Factors

Polymer used: EPDM (Vistalon 8600)

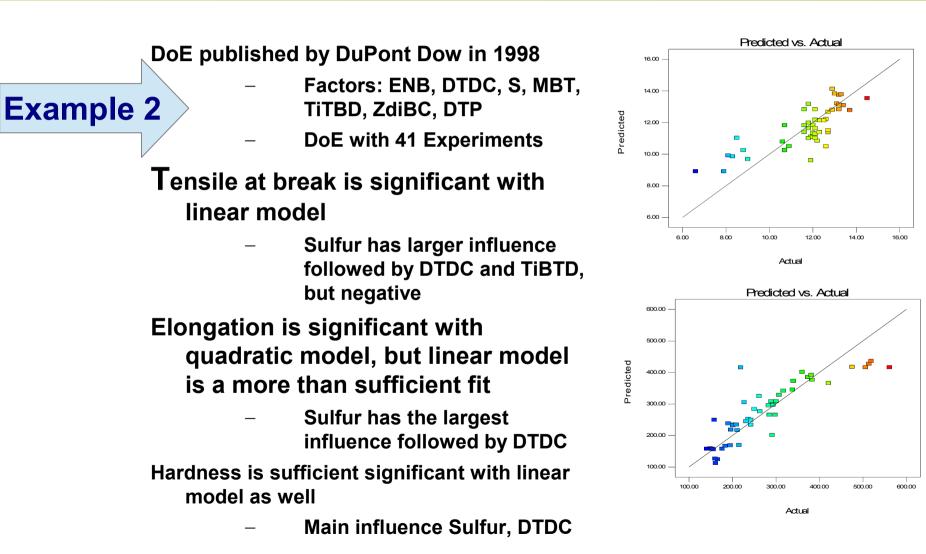

	Factor Name		Units	Min	Max
Example 1	— A C	6630	phr	60.00	95.00
Example 1.	BC	aCO3	phr	10.00	70.00
	CC	lay	phr	10.00	50.00
V	DC	Dil	phr	70.00	95.00

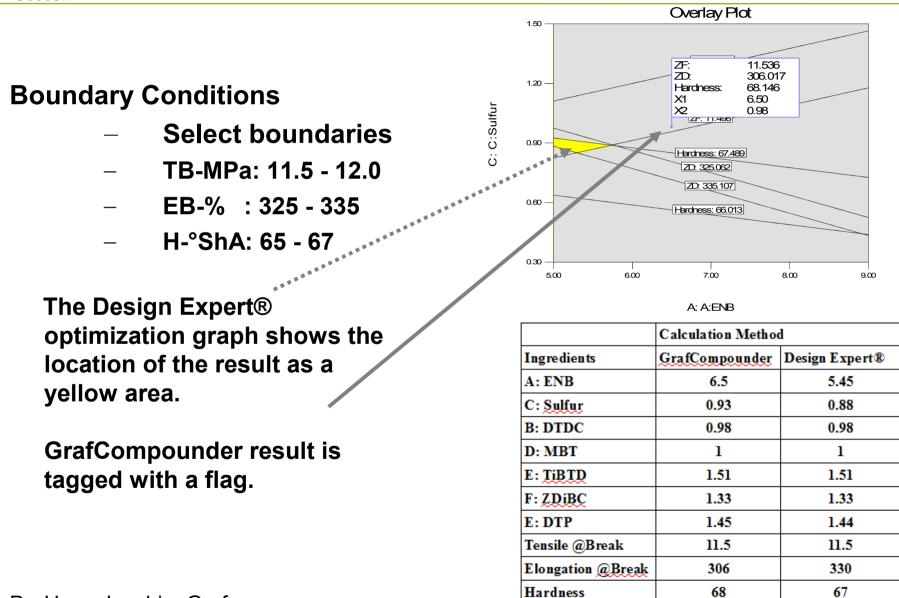
– A fractional factorial DoE with 11 compounds only!

Outlook

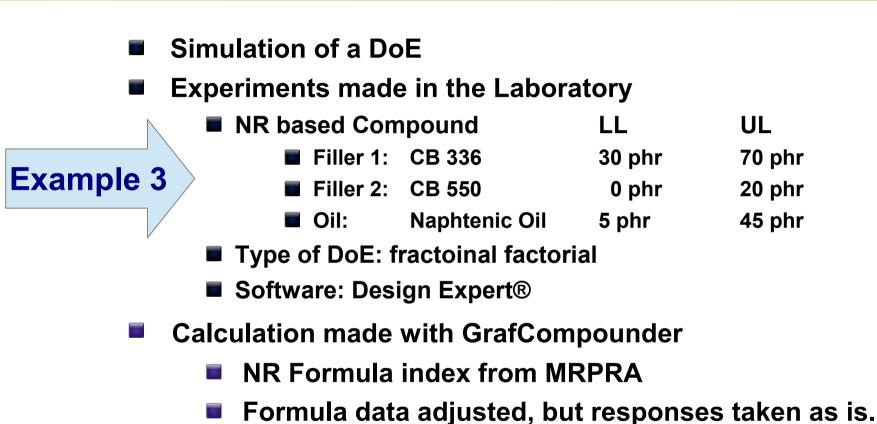

Rheology Data are examined

- MV and t₅ 125°C
 can be measured
 quite accurate.
- Both are significant with a linear model equation




A: C6630

Outlook


HJG

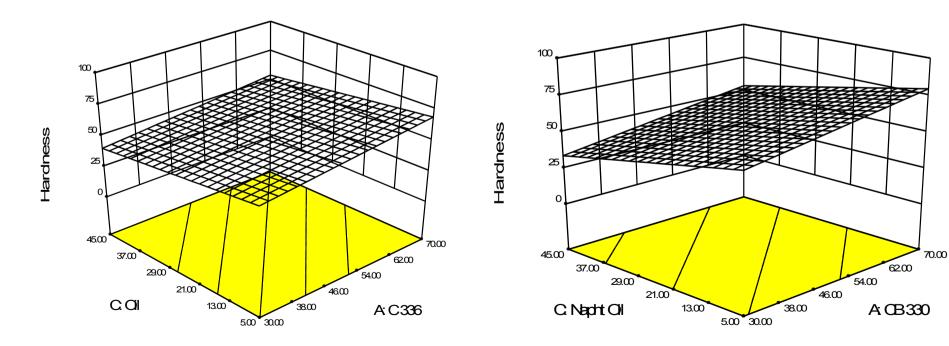
Dr. Hans-Joachim Graf

17

Outlook

★ For comparison: Hardness, Tensile - / Elongation at break

Hardness:


X1 – A: CB 336

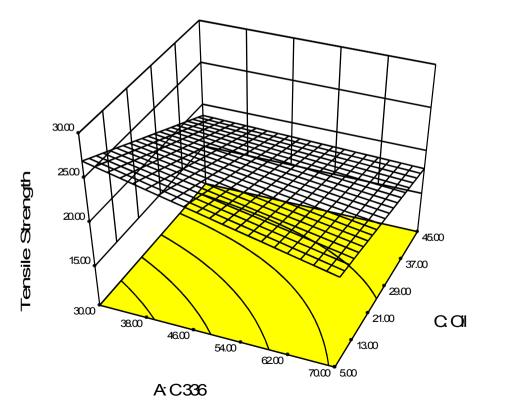
X2 = C: Naphtenic oil

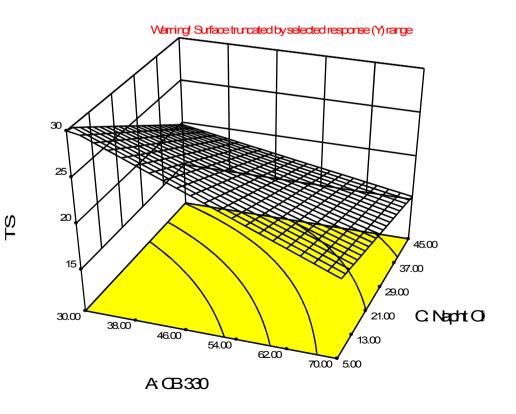
B: CB 550 = 10.00 phr

Hardness Simulation

X1 – A: CB 330 X2 = C: Naphtenic oil B: CB 550 = 10.00 phr

Tensile at break:


X1 – A: CB 336

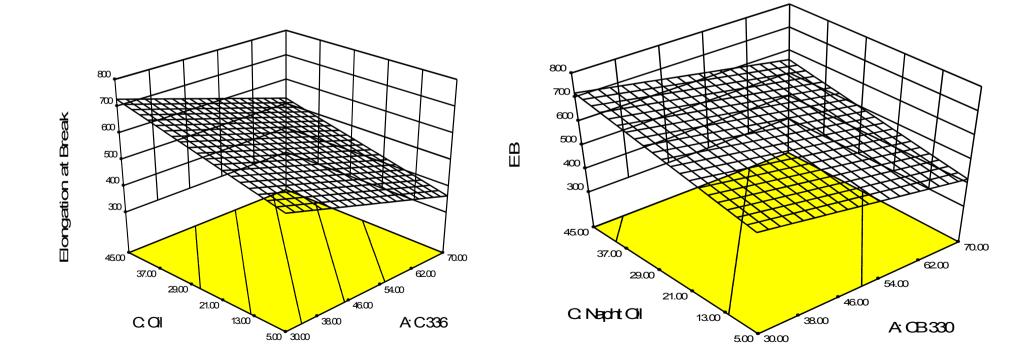

X2 = C: Naphtenic oil

B: CB 550 = 10.00 phr

Tensile at break Simulation

X1 – A: CB 330 X2 = C: Naphtenic oil B: CB 550 = 10.00 phr

Elongation at break:


X1 – A: CB 336

X2 = C: Naphtenic oil

B: CB 550 = 10.00 phr

Elongation at break Simulation

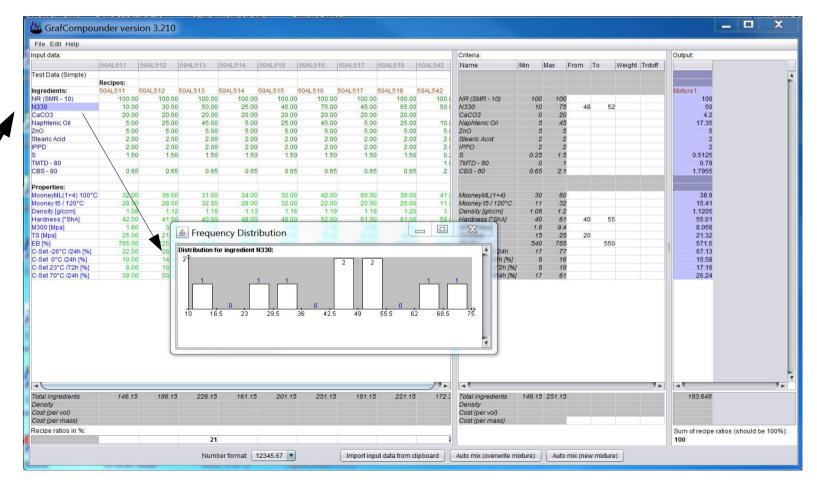
X1 – A: CB 330 X2 = C: Naphtenic oil B: CB 550 = 10.00 phr

Outlook

Screenshot of GrafCompounder V 2.004 with demo data, targets and a calculated compound

										Criteria:							Output:
	50AL511	50AL512	50AL513	50AL514	50AL515	50AL516	50AL517	50AL518	50AL542	Name	Min	Max	From	To	Weight	Trdoff	
Demo Data																	
F	Recipes:																
ngredients: 5	50AL511	50AL512	50AL513	50AL514 5	50AL515	50AL516 5	50AL517	50AL518	50AL542								Mixture1
NR (SMR - 10)	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	NR (SMR - 10)	100	100					100
N330	10.00	30.00		25.00	45.00	75.00	45.00	65.00	50.00	N330	10	75	4	3	52		50
CaCO3	20.00	20.00		20.00	20.00	20.00	20.00	20.00		CaCO3	0	20					4.2
Naphtenic Oil	5.00			5.00	25.00	45.00	5.00	25.00	10.00	Naphtenic Oil	5	45					17.35
ZnO	5.00		5.00	5.00	5.00	5.00	5.00	5.00	5.00	ZnO	5	5					5
Stearic Acid	2.00		2.00	2.00	2.00	2.00	2.00	2.00	2.00	Stearic Acid	2	2					2
PPD	2.00		2.00	2.00	2.00	2.00	2.00	2.00	2.00	IPPD	2	2					2
S	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	0.25	S	0.25	1.5					0.5125
TMTD - 80									1.00	TMTD - 80	0	1					0.79
CBS - 80	0.65			0.65	0.65	0.65	0.65	0.65	2.10	CBS - 80	0.65	2.1					1.7955
Total	146.15	186.15	226.15	161.15	201.15	251.15	181.15	221.15	172.35	Total	146.15	251.15				_	183.648
Properties:																1	
MooneyML(1+4) 100°C	32.00	36.00	31.00	34.00	30.00	42.00	60.00	39.00	41.00	MooneyML(1+4)	30	60					38.9
Mooney t5 / 120°C	28.00		32.00	28.00	32.00	22.00	20.00	25.00	11.00	Mooney t5 / 120°C	11	32					15.41
Density	1.08			1.13	1.16	1.19	1.19	1.20	1.11	Density	1.08	1.2					1.1205
Hardness	42.00			48.00	48.00	52.00	61.00	61.00	59.00	Hardness	40	61	4)	55		55.01
M300	1.80	3.00	3.00	4.40	4.60	5.30	8.00	7.60	9.40	M300	1.8	9.4					8.056
TS	25.00		15.00	25.00	20.00	15.30	23.00	18.00	23.00	TS	15	25	2				21.32
EB	785.00				705.00	615.00	560.00	590.00	540.00	EB	540	785		5	50		571.5
DVR -26°C /24h	22.00		30.00	17.00	19.00	35.00	29.00	27.00	77.00	DVR -26°C /24h	17	77					67.13
DVR 0°C /24h	10.00	14.00	14.00	8.00	12.00	16.00	13.00	12.00	16.00	DVR 0°C /24h	8	16					15.58
DVR 23°C /72h	8.00		14.00	9.00	13.00	16.00	10.00	17.00	18.00	DVR 23°C /72h	8	18					17.16
DVR 70°C /24h	39.00	50.00	61.00	44.00	50.00	54.00	44.00	50.00	17.00	DVR 70°C /24h	17	61					26.24
•									7.	4						,	-
Recipe ratios in %:																	Sum of recipe ratios (should
		i (21			10		0	79								100

Outlook


Screenshot of GrafCompounder V 3.210 with demo data, targets and a calculated compound

ile Edit Help										ETT							101	
put data:		1		1			Longer and the second second	E.	-	Criteria:	Enserting and the second secon	Freedow State	1.000	1	-		Output:	
	50AL511	50AL512	50AL513	50AL514	50AL515	50AL516	50AL517	50AL518	50AL542	Name	Min	Max	From	To	Weight	Trdoff		
est Data (Simple)																		
	Recipes:	5041 540	5041 542	FOAL FAA	5041 545	FOM FAC	50AL517	5041540	50AL542									
gredients:		50AL512	50AL513		50AL515	50AL516							20				Mixture1 100	
R (SMR - 10) 330	100.00									NR (SMR - 10) N330		00 10 10 1		8 5	-		50	
CO3	20.00									CaCO3			20 4	0 0	2		4.2	
phtenic Oil	5.00									Naphtenic Oil			15				17.35	
0	5.00									ZnO		5	5				17.35	
aric Acid	2.00									Stearic Acid		2	2				2	
D	2.00									IPPD		2	2				2	
	1.50									S	0.2		.5				0.5125	
TD - 80	1.54	1.04	1.54	1.50	1.5	1.54	1.0		1.0	TMTD - 80		0	1				0.79	
S - 80	0.65	0.65	0.65	0.65	0.6	5 0.65	5 0.6	5 0.65		CBS - 80	0.6		1				1.7955	
	0.0.	0.00	0.00	5.05	0.0.	0.00					5.0							
perties:																		
oneyML(1+4) 100°C	32.00	36.00	31.00	34.00	30.0	42.00	60.04	0 39.00	0 41.0	MooneyML(1+4)		30 0	50	1			38.9	
oney t5 / 120°C	28.00									Mooney t5 / 120°C			32				15.41	
nsity [g/ccm]	1.08		1.16			5 1.19	9 1.1			Density [g/ccm]	1.0		.2				1,1205	
dness [*ShA]	42.00									Hardness [*ShA]				0 5	5		55.01	
00 [Mpa]	1.80						0 8.0			M300 [Mpa]			.4				8.056	
[Mpa]	25.00	21.00	15.00	25.00	20.0	15.30	0 23.0	0 18.00	0 23.0	TS [Mpa]		15 2	25 2	0			21.32	
[%]	785.00	725.00	690.00	715.00	705.0	615.00	560.0	0 590.00	0 540.0	EB [%]	54	40 78	35	55	0		571.5	
Set -26°C /24h [%]	22.00	28.00	30.00	17.00	19.0	35.00	29.0	0 27.00	0 77.0	C-Set -26°C /24h		17 1	77				67.13	
Set 0°C /24h [%]	10.00	14.00	14.00	8.00	12.0	16.00	0 13.0	0 12.00	0 16.0	C-Set 0°C /24h [%]		8	16				15.58	
Set 23°C /72h [%]	8.00	10.00	14.00	9.00	13.0	16.00	0 10.0	0 17.00	0 18.0	C-Set 23°C /72h [%	5]	8 1	18				17.16	
Set 70°C /24h [%]	39.00	50.00	61.00	44.00	50.00	54.00	0 44.0	0 50.00	0 17.0	C-Set 70°C /24h [%	5]	17 6	51				26.24	
		496.48	00645	10115	004.48	05//5			/ 1 ►		110	15 054		_	_	y .	4	,
al ingredients nsity st (per vol) st (per mass)	146.15	5 186.15	226.15	161.15	201.15	5 251.15	5 181.15	5 221.15	5 172.3	Total ingredients Density Cost (per vol) Cost (per mass)	146.5	15 251.:	10				183.648	
cipe ratios in %:										/	/						Sum of recipe ratio	s (should be 100

Outlook

Screenshot of GrafCompounder V 3.210 with demo data, targets and a calculated compound

Outlook

HJG

Screenshot of GrafCompounder V 3.210 with demo data, targets and a calculated compound

nput data:									Criteria:							Output:	
				50AL511	50AL512	50AL513	50AL514	50AL515	Name	Min	Max	From	To	Weight	Trdoff		
est Data (Advanced)				VI - 90.													
		-	100 M 100	Recipes:													
	Cost:	Density:	Ingredients:			50AL513		50AL515		0.23						Mixture1	
.001	280.00	0.92	NR (SMR - 10)	100.00					NR (SMR - 10)	100						100	
1003	115.00	1.80	N330	10.00					N330	10			8 52	2		52	
:010	24	2.71	CaCO3	20.00					CaCO3	0						3.35	
0002	1	0.89	Naphtenic Oil	5.00					Naphtenic Oil	5		5				13.0625	
001	385.00	5.60	ZnO	5.00					ZnO	5		5				5	
001	165.00	0.92	Stearic Acid	2.00					Stearic Acid	2		2				2	
SD 1	924.00	1.15	IPPD	2.00					IPPD	2		2				2	
1001	158.00	1.80	S	1.50	1.50	1.50	0 1.50	0 1	S	0.25		5				0.459375	
001	396.00	1.11	TMTD - 80						TMTD - 80	0		1				0.8325	
.05	708.00	1.28	CBS - 80	0.65	0.65	0.65	5 0.65	5 O.	CBS - 80	0.65	5 2.	1				1.857125	
ode:			Properties:														
R001			MooneyML(1+4) 100°C			31.00	0 34.00		MooneyML(1+4)	30						42.3575	
R002			Mooney t5 / 120°C	28.00		32.00	0 28.00	32.	Mooney t5/120°C	11						12.7225	
R003			Density [g/ccm]	1.08					Density [g/ccm]	1.08						1.123125	
R004			Hardness [*ShA]	42.00					Hardness [°ShA]	40						58.41	
R007			M300 [Mpa]	1.80					M300 [Mpa]	1.8						8.88675	
R008			TS [Mpa]	25.00	21.00	15.00	0 25.00	20.	TS [Mpa]	15						22.25425	
R009			EB [%]	785.00					EB [%]	540			550)		549.275	
R010			C-Set -26°C /24h [%]	22.00					C-Set -26°C /24h	17						69.5275	
R011			C-Set 0°C /24h [%]	10.00					C-Set 0°C /24h [%]	8						15.7825	
PR012			C-Set 23°C /72h [%]	8.00					C-Set 23°C /72h [%							17.24	
PR013			C-Set 70°C /24h [%]	39.00	50.00	61.00	0 44.00	50.	C-Set 70°C /24h [%]] 17	6	1				22.485	
•()			7.6	-						7.	4	,
otal ingredients				146.15					Total ingredients		5 251.1					180.5615	
Density				1.096		1.128			Density		5 1.18					1.123	
Cost (per vol)				262.547	237.377	220.712			Cost (per vol)	219.724						257.46	
Cost (per mass)				239.55	212.894	195.667	7 227.957	205.5	Cost (per mass)	187.638	3 239.5	5				229.261	
ecipe ratios in %:				0.25												Sum of recipe ratios (should be 100

Outlook

Screenshot of GrafCompounder V 3.210 with demo data, targets and a calculated compound

File Edit Help		2.4														
Clear All Data									Criteria:						Output:	
Load Demo Data	Simple)	1		50AL511	50AL512	50AL513	50AL514	50AL515	Name	Min	Max	From	To Wei	ight Trdoff		
Load Demo Data	Advanced)															
Open File				Recipes:												
Save As		nsity:						50AL515							Mixture 1	
		0.92	NR (SMR - 10)	100.00				100.	NR (SMR - 10)	100					100	
Merge in Recipes		1.80	N330	10.00				45.	N330	10			52		52	
Merge in Recipes	from File	2.71	CaCO3 Naphtenic Oil	20.00					CaCO3	6					3.35 13.0625	
Exit		0.89	ZnO	5.00				25.	Naphtenic Oil ZnO	2		5 6			13.0025	
001	165.00	0.92	Stearic Acid	2.00					Stearic Acid	2		0			2	
001	924.00	1.15	IPPD	2.00				2	IPPD	2		2			2	
001	158.00	1.80	S	1.50					S	0.25		5			0.459375	
001	396.00	1.11	TMTD - 80	1.50	1.50	1.50	1.50		TMTD - 80	0.20		1			0.8325	
005	708.00	1.28	CBS - 80	0.65	0.65	0.65	0.65	0	CBS - 80	0.65		1			1.857125	
			19750-201		2000						1	1				
ode:			Properties:													
R001			MooneyML(1+4) 100°C	32.00	36.00	31.00	34.00	30.	MooneyML(1+4)	30	6	0			42.3575	
R002			Mooney t5 / 120°C	28.00	28.00	32.00	28.00	32	Mooney t5 / 120°C	11	3.	2			12.7225	
R003			Density [g/ccm]	1.08	1.12	1.16	1.13	1.	Density [g/ccm]	1.08	3 1.	2			1.123125	
R004			Hardness ["ShA]	42.00	41.00	40.00	48.00	48.	Hardness ["ShA]	40	6	1			58.41	
R007			M300 [Mpa]	1.80					M300 [Mpa]	1.8					8.88675	
R008			TS [Mpa]	25.00					TS [Mpa]	15					22.25425	
R009			EB [%]	785.00				705.	EB [%]	540			550		549.275	
R010			C-Set -26°C /24h [%]	22.00					C-Set -26°C /24h	17					69.5275	
R011			C-Set 0°C /24h [%]	10.00					C-Set 0°C /24h [%]	8					15.7825	
R012			C-Set 23°C /72h [%]	8.00				13.	C-Set 23°C /72h [%]						17.24	
R013			C-Set 70°C /24h [%]	39.00	50.00	61.00	44.00	50.	C-Set 70°C /24h [%]	1 17	6	1			22.485	
•()			7.	-(7.		,
otal ingredients				146.15	186.15	226.15		201.	Total ingredients		251.1				180.5615	
lensity				1.096	1.115	1.128		1.1	Density		1.18				1.123	
ost (per vol) ost (per mass)				262.547 239.55	237.377 212.894	220.712 195.667		235.8 205.5	Cost (per vol) Cost (per mass)	219.724					257.46 229.261	
ecipe ratios in %:						190.007	221.331	200.0	Cost (per mass)	101.030	233.0	2			Sum of recipe ratios (s	hould be 100
				0.25											100	

Outlook

Recipe manager

- λ $\,$ Creation of a formula according predefined criteria
 - v Ingredients
 - **Properties**
 - v Cost
- λ $\,$ Trace ability back to the starting formulas
 - Analysis of outliers and their correction or elimination in the database is possible.
 - Integration of results from statistical experimental designs with merge function.
 - Integration of databases of different origin, provided that an export of the data is possible with table calculation programs.

Result of the calculations MUST be confirmed by an experiment.

 λ Probability of a match between calculation and confirmation experiment result is about 90-5% according first experience

Outlook

Examples show:

The resulting formulas calculated correspond to the general rules of compounding

 Differences with calculations based on regression obtained with DoE is marginal

The formulas will show property scores larger than the 90 % – 95 % confidence interval in confirmation experiment

Only one confirmation experiment would be needed as opposed to multiple trials in case of development targets.

- Starting formula calculated with GrafCompounder
- Optimized formula with Optimization Tool in DoE Software

More information under: www.grafcompounder.com

Outlook

Release of the "GrafCompounder" Version 3.210

Thank you for joining this presentation.

More information under: www.grafcompounder.com